March of the Fossil Penguins

Fossil penguin discoveries and research

Archive for the ‘Uncategorized’ Category

Diving into Fossil Penguin Brains

leave a comment »

Here is a wonderful reconstruction of the fossil penguin we analyzed in our recent penguin brain evolution study, created by artist Santiago Druetta. The fossil species is hunting down an icefish, a type of fish also known from the 34 million year old fossil La Meseta Formation deposits that yielded the fossil penguin skull.  In the background swims a modern Chinstrap Penguin, a species named for the party-hat-string-like band of black feathers across its chin. The brains of these penguins are shown in the upper right corner.

But what species is the fossil?  Actually, we are not sure. This is because the many extinct species have been named from the La Meseta Formation and each was described by scientists based on limb bones. Because the skull we studied was found in isolation with no traces of the rest of the skeleton, we can’t be sure which species it belongs to with certainty. The skull is roughly the same size as the skull of an Emperor Penguin, but we know that many extinct penguins had small heads relative to their overall body size. Thus, the skull could easily belong to a giant penguin like Anthropornis nordenskjoedli or Palaeeudyptes gunnari.

The situation is even more complex when you consider that we looked at two additional fossil skulls from the La Meseta Formation in the study, and found evidence that each belonged to a different species than the main skull.  One has a very different external morphology. The other looks the same on the outside, but had such a different brain shape that we concluded it must belong to a third species. Regardless of the precise species identifications, these skulls have provided excellent new data on early penguin brain structure.

Life restoration of a 34.2 million year old Antarctic fossil penguin and the extant chinstrap penguin, with virtual brain endocasts of their brains based on X-Ray CT scan data (top right). Original artwork by Santiago Druetta.

Life restoration of a 34.2 million year old Antarctic fossil penguin and the extant chinstrap penguin, with virtual brain endocasts of their brains based on X-Ray CT scan data (top right). Original artwork by Santiago Druetta.

Written by Dan Ksepka

August 28, 2015 at 2:08 pm

Posted in Uncategorized

Police apprehend penguin in Peru

with one comment

The title says it all!

Written by Dan Ksepka

August 26, 2015 at 9:09 pm

Posted in Uncategorized

Ancient Penguin Brains from Antarctica

with one comment

Today, a new research article on fossil penguin brains is available at the Journal of Vertebrate Paleontology. I’m pleased to have been part of this study, led by Dr. Claudia Tambussi and Dr. Federico “Dino” Degrange. We looked at three Eocene fossil skulls from Antarctica, each belonging to a 34 million year old penguin. These fossils were recovered during expeditions by Dr. Tambussi and other scientists to Antarctica. In order to shed some light on the neuroanatomy morphology of the ancient penguins, we used CT scans of the skulls to create virtual endocasts – 3D models of the brain and  sensory organs.

Reconstructions of the brain (blue), semicircular canals (pink), cranial nerves (yellow) and carotid artery canal (red)  in penguins. (a) Antarctic fossil, (b) Paraptenodytes antarcticus, (c) Emperor Penguin, (d) Black-footed Penguin, (e) Magellanic Penguin, (f) Little Blue Penguin, (G) Chinstrap Penguin, (H) Adélie Penguin. Not to scale. IMage from Tambussi et al. (2015)

Virtual endocasts of the brain (blue) and semicircular canals (pink) in (a) new Antarctic fossil, (b) Paraptenodytes antarcticus, (c) Emperor Penguin, (d) Black-footed Penguin, (e) Magellanic Penguin, (f) Little Blue Penguin, (G) Chinstrap Penguin, (H) Adélie Penguin. Not to scale. Image from Tambussi et al. (2015)

Penguins are considered flightless, but when it comes to wing-propelled diving they are essentially practicing underwater flight. The brain morphology reflects this as modern penguins retain an overall “flight-ready” brain. The new Antarctic fossils are important because they provide the oldest penguin endocasts available for study (they are more than ten million years older than the Paraptenodytes antarcticus endocast we studied in 2012). These fossils show that ancient penguin brains had several important differences from modern species.
One of the interesting features in the endocasts from the fossil species was the larger size of the olfactory bulbs. Modern penguins have very small olfactory bulbs compared to their closest relatives, the tubenose Procellariiformes (petrels and allies). This is likely related with their reduced reliance on smell to locate prey compared to sensitive-nosed petrels, which can sniff out stinky slicks of chum from miles away. Penguins tend to rely more on vision to locate prey. The early fossil species had relatively larger olfactory bulbs (though nowhere near as large as petrels), suggesting that reduction of olfactory capabilities was a slow trend in penguin evolution following the loss of flight.  Another interesting facet of the endocast data is that it provides more support for the hypothesis that the morphology of the Wulst, a brain structure associated with complex visual function, changed in similar ways in different groups of birds. Researchers like Dr. Stig Walsh have demonstrated that the Wulst is restricted to the front part of the brain surface in early members of many groups of birds, but expands backwards in modern species. Because we see the same pattern in different types of birds (including penguins) over the course of millions of years, it suggests they  evolved this feature independently. What advantage this may have conferred remains mysterious because of limits of the technology for studying fossil brains: our endocasts only provide the surface morphology, but cannot “see” the boundaries that would have existed between layers of cells associated with different brain functions because all that remains is the void where the brain was once housed.

Reference:

Tambussi, C.P., F.J. Degrange and D.T. Ksepka. 2015. Endocranial Anatomy of Antarctic Eocene stem penguins: implications for sensory system evolution in Sphenisciformes (Aves). Journal of Vertebrate Paleontology: e981635.

Written by Dan Ksepka

August 25, 2015 at 4:13 pm

Posted in Uncategorized

North Island Giant Penguin on Display

with one comment

A remarkably complete giant penguin is now on display at the Waikato Museum in New Zealand. This penguin was discovered not by professional paleontologists from a museum or university, but by the Hamilton Junior Naturalist (JUNATS), a group of young scouts.  The penguin bones were spotted embedded in the rocky shoreline, awash in the shallow waves. According to the report, the JUNATS originally though they had come across “an old rusty propeller”. Indeed, the orange-brown colors of the bone have the appearance of distressed iron, lending to their charm. Once their mentors established that the group had a fossil on their hands, an excavation effort began. You can see the process in the video below.

Now, the fossil is in the Waikato Museum curated by Salina Ghazally, which includes some neat accompaniments such as a touchscreen interactive with 3D bone scans.  Experts including Dr. Daniel Thomas are investigating the bones too, to determine their affinities. This penguin is important because although New Zealand is the world capital in fossil penguin diversity, almost all of the fossils that have been described were discovered on the South Island. The new fossil is the best ever discovered on the North Island and will be key in establishing how penguin species overlapped or differed in the two regions millions of years ago. I had the chance to see this superb fossil in 2011, and it is well worth the trip.  Like my own home museum, the Bruce Museum, the Waikato Museum hosts art, science and history exhibitions, so there is always something new to see.

Written by Dan Ksepka

June 18, 2015 at 9:24 am

Posted in Uncategorized

King Penguins and Ice Ages

leave a comment »

King Penguins and Emperor Penguins share a similar appearance. In fact, the poor King Penguins in the Central Park Zoo are called Emperors by roughly 99% of the visitors I have overheard talking about them (also overheard: one child told his mother than penguins definitely know about Captain America). Yet, Kings and Emperors have very different environmental preferences. Whereas Emperors breed on sea ice sheets, Kings require sites that are ice-free year-round to carry out their unique breeding cycle, which spans over a year from egg-laying to fledging of the juveniles.

crozet

Possession island (red pin) is today well north of the limits of winter sea ice, but would have been ice-bound in the winter during the Last Glacial Maximum.

penguin pop

Estimates of Possession Island King Penguin population over time (red lines) compared to temperature (black lines) inferred from ice cores. From Trucchi et al. (2014).

A recent study by Dr. Emiliano Trucchi and colleagues looked at the genetic structure of Kings from Possession Island. Possession Island is part of the Crozet Archipelgo in the Indian Ocean, where roughly half of the world’s population of King Penguins lives. These data revealed that the population in this region was very low about 20,000 years ago.

Why might this be? At 20,000 years before present, the Earth was locked in a cold period known as the Last Glacial Maximum (often referred to as the Ice Age). In North America glaciers extended right down to New Jersey. In the Southern Hemisphere, winter sea ice extended far north of the modern day limits, enveloping many islands that stand in open water all year round today, including Possession Island. This would presumably make it impossible for King Penguins to successfully breed on many of the islands they favor today. So what happened to all those penguins? One possibility raised by the authors is that they moved North to ice-free beaches in places like New Zealand. This hypothesis is supported by a few tantalizing fossils that suggest Aptenodytes penguins once occurred in New Zealand (and maybe even South Africa).

As climate warmed and sea ice retreated, King Penguins were able to reclaim sites like Possession Island as breeding colonies. This led to a marked increase in the Crozet archipelago population, as shown by the DNA analyses. While it may seem like this particular group of penguins benefited from melting ice 20,000 years ago, playing the warming tape forward raises a troubling specter. Other studies have shown reproductive rates in the modern Crozet Archipelago King Penguin populations have been negatively impacted by increased sea temperatures because warmer temperatures force the penguins to swim farther from their nests to find food-rich cold waters, requiring more energy use and increasing the time at sea.

Reference:

Trucchi E, Gratton P, Whittington JD, Cristofari R, Le Maho Y, Stenseth NC, Le Bohec C. 2014 King penguin demography since the last glaciation inferred from genome-wide data. Proc. R. Soc. B 281: 20140528.

http://dx.doi.org/10.1098/rspb.2014.0528

Written by Dan Ksepka

June 12, 2015 at 12:11 pm

Posted in Uncategorized

Happy World Penguin Day

leave a comment »

penguin1

Here is a heart-warming image for World Penguin Day.  Australia’s oldest man, 109 year-old Alfred Date, knitted a series of heavy but tiny sweaters for one of Australia’s cutest residents: the Little Blue Penguin.  Oil-slicked penguins had arrived at shore in need of the sweater to keep the, warm and stop them from ingesting oil while trying to preen their feathers. Many people would love to knit sweaters for penguins, but as a matter of fact so many were created that the center has stopped accepting them. Alfred has re-directed his tiny-sweater making skills to help human infants.

Read the full story by Jenni Ryall here.

Written by Dan Ksepka

April 25, 2015 at 8:01 pm

Posted in Uncategorized

Inkayacu is now a stamp!

leave a comment »

Sending some mail from Peru? What better way to show your love of Peruvian fossils than slapping an Inkayacu paracasensis stamp on the parcel! Inkayacu is an extinct penguin species most well known for its fine fossil feathers. This amazing discovery is now honored with an official stamp from the Peruvian postal service. At 10 Nuevo Sol (about $3 US), this stamp should be good for a pretty large packet.  Between this and the Kairuku coin, fossil penguins have really been basking in official government recognition as of late. per201301l

Written by Dan Ksepka

April 1, 2015 at 11:03 am

Posted in Uncategorized

Follow

Get every new post delivered to your Inbox.

Join 69 other followers